-
Kenya's economy faces climate change risks: World Bank
-
Volatile Oracle shares a proxy for Wall Street's AI jitters
-
Japan hikes interest rates to 30-year-high
-
Brazil's top court strikes down law blocking Indigenous land claims
-
'We are ghosts': Britain's migrant night workers
-
Asian markets rise as US inflation eases, Micron soothes tech fears
-
Trump signs $900 bn defense policy bill into law
-
EU-Mercosur deal delayed as farmers stage Brussels show of force
-
Harrison Ford to get lifetime acting award
-
Trump health chief seeks to bar trans youth from gender-affirming care
-
Argentine unions in the street over Milei labor reforms
-
Brazil open to EU-Mercosur deal delay as farmers protest in Brussels
-
Brussels farmer protest turns ugly as EU-Mercosur deal teeters
-
US accuses S. Africa of harassing US officials working with Afrikaners
-
ECB holds rates as Lagarde stresses heightened uncertainty
-
Trump Media announces merger with fusion power company
-
Stocks rise as US inflation cools, tech stocks bounce
-
Zelensky presses EU to tap Russian assets at crunch summit
-
Danish 'ghetto' residents upbeat after EU court ruling
-
ECB holds rates but debate swirls over future
-
Bank of England cuts interest rate after UK inflation slides
-
Have Iran's authorities given up on the mandatory hijab?
-
British energy giant BP extends shakeup with new CEO pick
-
EU kicks off crunch summit on Russian asset plan for Ukraine
-
Sri Lanka plans $1.6 bn in cyclone recovery spending in 2026
-
Most Asian markets track Wall St lower as AI fears mount
-
Danish 'ghetto' tenants hope for EU discrimination win
-
What to know about the EU-Mercosur deal
-
Trump vows economic boom, blames Biden in address to nation
-
ECB set to hold rates but debate swirls over future
-
EU holds crunch summit on Russian asset plan for Ukraine
-
Nasdaq tumbles on renewed angst over AI building boom
-
Billionaire Trump nominee confirmed to lead NASA amid Moon race
-
CNN's future unclear as Trump applies pressure
-
German MPs approve 50 bn euros in military purchases
-
EU's Mercosur trade deal hits French, Italian roadblock
-
Warner Bros rejects Paramount bid, sticks with Netflix
-
Crude prices surge after Trump orders Venezuela oil blockade
-
Warner Bros. Discovery rejects Paramount bid
-
Doctors in England go on strike for 14th time
-
Ghana's Highlife finds its rhythm on UNESCO world stage
-
Stocks gain as traders bet on interest rate moves
-
France probes 'foreign interference' after malware found on ferry
-
Europe's Ariane 6 rocket puts EU navigation satellites in orbit
-
Bleak end to the year as German business morale drops
-
Hundreds queue at Louvre museum as strike vote delays opening
-
Markets rise even as US jobs data fail to boost rate cut bets
-
Asian markets mixed as US jobs data fails to boost rate cut hopes
-
Bondi shooting shocks, angers Australia Jewish community
-
UK experiences sunniest year on record
What are proteins again? Nobel-winning chemistry explained
The Nobel Prize in Chemistry was awarded on Wednesday to three scientists who have help unravel some of the enduring secrets of proteins, the building blocks of life.
While Demis Hassabis and John Jumper of Google's DeepMind lab used artificial intelligence techniques to predict the structure of proteins, biochemist David Baker managed to design totally new ones never seen in nature.
These breakthroughs are hoped to lead towards numerous advances, from discovering new drugs to enzymes that decompose pollutants.
Here is an explainer about the science behind the Nobel win.
- What are proteins? -
Proteins are molecules that serve as "the factories of everything that happens in our body," Davide Calebiro, a protein researcher at the UK's University of Birmingham, told AFP.
DNA provides the blueprint for every cell. Proteins then use this information to do the work of turning that cell into something specific -- such as a brain cell or a muscle cell.
Proteins are made up of 20 different kinds of amino acid. The sequence that these acids start out in determines what 3D structure they will twist and fold into.
American Chemical Society president Mary Carroll compared how this works to an old-fashioned telephone cord.
"So you could stretch out that telephone cord, and then you would just have a one-dimensional structure," she told AFP.
"Then it would spring back" into the 3D shape, she added.
So if chemists wanted to master proteins, they needed to understand how the 2D sequences turned into these 3D structures.
"Nature already provides tens of thousands of different proteins, but sometimes we want them to do something they do not yet know how to do," said French biochemist Sophie Sacquin-Mora.
- What did AI do? -
The work of previous Nobel winners had demonstrated that chemists should be able to look at amino acid sequences and predict the structure they would become.
But it was not so easy. Chemists struggled for 50 years -- there was even a biannual competition called the "Protein Olympics" where many failed the prediction test.
Enter Hassabis and Jumper. They trained their artificial intelligence model AlphaFold on all the known amino acid sequences and corresponding structures.
When given an unknown sequence, AlphaFold compares it with previous ones, gradually reconstructing the puzzle in three dimensions.
After the newer generation AlphaFold2 crushed the 2020 Protein Olympics, the organisers deemed the problem solved.
The model has now predicted the structure of almost all of the 200 million proteins known on Earth.
- What about the new proteins? -
US biochemist Baker started at the opposite end of the process.
First, he designed an entirely new protein structure never seen in nature.
Then, using a computer programme called Rosetta that he had developed, he was able to work out the amino acid sequence that it started out as.
To achieve this, Rosetta trawled through all the known protein structures, searching for short protein fragments similar to the structure it wanted to build.
Rosetta then tweaked them and proposed a sequence that could end up as the structure.
- What is all this for? -
Mastering such fundamental and important little machines as proteins could have a vast number of potential uses in the future.
"It allows us to better understand how life functions, including why some diseases develop, how antibiotic resistance occurs or why some microbes can decompose plastic," the Nobel website said.
Making all-new proteins could lead to new nanomaterials, targeted drugs and vaccines, or more climate-friendly chemicals, it added.
Asked to pick a favourite protein, Baker pointed to one he "designed during the pandemic that protects against the coronavirus".
Calebiro emphasised how "transformative" this research would be.
"I think this is just the beginning of a completely new era."
A.Levy--CPN